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Chern–Simons TUY/WZNW Model CS = TUY Main Theorem

Chern–Simons Theory: Recap

Setting

3-dimensional gauge theory on M3
G compact, simply connected gauge
group (e.g. SU(N))
g = Lie(G) and [ξa, ξb] = f cbaξc

Field content

Fields: connections A ∈ Ω1(M3; g) + A0
A = ξaAa

µ dxµ Lie algebra-valued 1-form

Equations of motion

FA = dAA = dA+ [A ∧ A] = 0
F a
µν = ∂[µA

a
ν]

+ f abcA
b
[µ
Ac
ν]

= 0.

Gauge transformations

G := {g : M3 → G smooth}

g · A := AdgA+ g−1 dg

g · Aµ := gAµg
−1 + g−1∂µg

Classical solutions

Moduli space of flat connections
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Chern–Simons Theory: Reduction to boundary

Setting

3-dim. gauge theory on M3 = Σ2 × [0, 1]
G compact, connected, simply connected
gauge group, g = Lie(G)

Reduction

2-dim. gauge theory on Σ2 closed surface
Moduli space M(Σ) of flat connections
on Σ

Quantisation

Geometric quantisation
Wilson operator Wλ(C) := Trλ

[∫
C A

]
charge λi ∈ g at pi

Moduli space

M(Σ, p⃗, λ⃗) of flat connections on
Σ◦ := Σ \ {p1, . . . , pn}∫
Si
A ∼ exp(2πiλi/k)

∼= Moduli space of λ⃗-parabolic G -bundles

Σ

Σ

M3 =⇒ λ

S1
Σ
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Cherns–Simons TQFT: Quantisation

Σ

λ2

λ1

S1

λ3

moduli space of
flat connections

∫
Si
A ∼ exp(2πiλi/k)

M = M
λ⃗,k

T (Σ, p⃗)
“space of complex structures”

σ

ge
om

et
ric

qu
an

tis
at

io
n

H0(M;L)

|ψ⟩

σ′

H0(Mσ′ ;Lσ′ )
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Cherns–Simons TQFT: Quantisation
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Cherns–Simons TQFT: Quantisation

Σσ′

λ2
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Cherns–Simons TQFT: Quantisation

Σσ′

λ2
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moduli space of
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∫
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Chern–Simons Theory: The metaplectic-corrected Hitchin Connection

Hitchin connection
[Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle H
(k)

λ⃗
↠ T (Σ, p⃗)

space of complex structures
∇H projectively flat

Topological obstruction

∇H exists if:

H1(M) = 0

c1(M) = n[ ω
2π ]: rare!

Differential operator

∇H
V = LV + u(V ) with u(V ) 2nd-order

differential operator [Andersen, 2012] ∇H
V

preserves holomorphic ⊂ smooth sections

Solution

Metaplectic correction
Exists if c1(M) even and H0,1(M) = 0

Lemma (Andersen and H., to appear)

The metaplectic-corrected Hitchin connection exists on H
(k)

λ⃗
for regular weights λ⃗.

Lemma (Andersen and H., to appear)

For every tuple λ⃗ the sum λ⃗+ ρ⃗ is regular and the inclusion H
(k)

λ⃗
⊆ δH

(k+h∨)

λ⃗+ρ⃗
is preserved by

the metaplectic-corrected Hitchin connection.
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The Tsuchiya–Ueno–Yamada/Wess–Zumino–Novikov–Witten model

TUY/WZNW CFT

2-dimensional gauge theory on Σ2
G compact, connected, simply connected
gauge group, g = Lie(G)
Conformal field theory

Conformal blocks (conformal covacua)

V
λ⃗,k

:=
[⊗n

i=1 Hk (λi )
]
g[Σ◦]

where g[Σ◦] = {Σ◦ → g algebraic} Hk (λ) via Laurent exp.

Σ

Verma module Hk (λ) = Vλ[t
−1]

irr. rep. ĝ := g((t))⊕ Cc,
highest weight λ, central charge k.

“primary field insertions” Φλi (pi )
t−1 creation, t annihilation

g Vλ irr. rep. highest weight λ
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irr. rep. ĝ := g((t))⊕ Cc,
highest weight λ, central charge k.

“primary field insertions” Φλi (pi )
t−1 creation, t annihilation

g Vλ irr. rep. highest weight λ

Tim Henke Joint work with Jørgen Ellegaard Andersen
Dynamic CS/WZNW duality: the missing case



Chern–Simons TUY/WZNW Model CS = TUY Main Theorem

The Tsuchiya–Ueno–Yamada/Wess–Zumino–Novikov–Witten model

TUY/WZNW CFT

2-dimensional gauge theory on Σ2
G compact, connected, simply connected
gauge group, g = Lie(G)
Conformal field theory

Citations

[Wess and Zumino, 1974,
Tsuchiya et al., 1989, Ueno, 2008,
Kawamoto et al., 1988,
Andersen and Ueno, 2007b]

Conformal blocks (conformal covacua)

V
λ⃗,k

:=
[⊗n

i=1 Hk (λi )
]
g[Σ◦]

where g[Σ◦] = {Σ◦ → g algebraic} Hk (λ) via Laurent exp.

Σ

λ2
λ1

λ3

λ2 t−1 |v⟩
t−2 |w⟩

t−3 |u⟩

Verma module Hk (λ) = Vλ[t
−1]
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WZNW CFT: Sheaf of Conformal Blocks

Σ

λ2

λ1

λ3

V
λ⃗,k

|Φ⟩

σ′

V
λ⃗,k;σ′

T (Σ, p⃗)
“space of complex structures”

σ
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TUY CFT: Knizhnik–Zamolodchikov Connection

Knizhnik–Zamolodchikov equations [Knizhnik and Zamolodchikov, 1984]

Ward Identities =⇒

(k + h∨)
∂

∂zi
+

∑
i ̸=j

∑
a

ξai ⊗ ξaj

zi − zj

 ⟨Φ(v1, z1) · · ·Φ(vN , zN)⟩ = 0

Knizhnik–Zamolodchikov connection

∇KZ := d +
1

2(k + h∨)

∑
i ̸=j

ξai ⊗ ξaj

zi − zj
(dzi − dzj )

Higher genus: Knizhnik–Zamolodchikov–Bernard equations/Tsuchiya–Ueno–Yamada connection

[Bernard, 1988, Tsuchiya et al., 1989]
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CS = TUY

Data

p1, . . . , pn ∈ Σ smooth surface, Σ◦ := Σ \ {p1, . . . , pn}
G(= SU(N)) semi-simple, connected, simply connected Lie group, g = Lie(G)(= su(N))
λ1, . . . , λn ∈ g∗ representations: integral, dominant weights/charges
k > 0 integer: level/quantisation parameter

CS WZNW
Physics Quantised classical gauge theory Conformal gauge theory
pi Punctures Poles
Fields Flat g-connections on Σ◦ g-modes on Σ◦

Charges Holonomy pi ∼ λ∨i /k Highest weight λi , central charge k
Dependence Complex structure Conformal structure
Connection Hitchin connection KZ connection

Theorem (Uniformisation Theorem [Witten, 1989, Laszlo and Sorger, 1997])

H
(k)

λ⃗
∼= V

λ⃗,k
as vector bundles over T (Σ, p⃗).
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Main Theorem

Theorem (Uniformisation Theorem)

H
(k)

λ⃗
∼= V

λ⃗,k
as vector bundles over
T (Σ, p⃗).

Previous work

[Laszlo, 1998], [Andersen et al., 2017],
[Biswas et al., 2021b,
Biswas et al., 2021a],
[Daskalopoulos and Wentworth, 2011]

Theorem (Andersen and H., to appear)

Let p1, . . . , pn ∈ Σ = CP1 be a smooth pointed surface and let k > 0, n ≥ 3, and N ≥ 2 be
integers. Let G = SU(N) and λ⃗ = (λ1, . . . , λn) be integral, dominant weights for G . If
n + N ≥ 7, then the uniformisation isomorphism

H
(k)

λ⃗
(Σ, p⃗) ∼= V

λ⃗,k
(Σ, p⃗)

of vector bundles over Teichmüller space T (Σ) is projectively flat with respect to the Hitchin
connection ∇H and the Knizhnik–Zamolodchikov connection ∇KZ .
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Application: Topological Quantum Field Theory

To do:

Construct full gauge-theoretic WRT
TQFT from this via

[Andersen and Petersen, 2016].

Gauge theory Conformal field theory Braid algebra

Physics Chern–Simons QFT WZNW CFT Algebraic
[Witten, 1989] [Witten, 1989] [Witten, 1989]

Maths ? TUY TQFT Modular tensor categories
[Andersen and [Reshetikhin and
Ueno, 2007b] Turaev, 1991]

Theorem ([Andersen and Ueno, 2007a, Andersen and Ueno, 2012, Andersen and Ueno, 2015])

The Tsuchiya–Ueno–Yamada TQFT constructed in [Andersen and Ueno, 2007b] is isomorphic
to the Witten–Reshetikhin–Turaev TQFT.
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Proof idea

Proof sketch.

1: geometrise Knizhnik–Zamolodchikov connection

V
λ⃗,k

⊆ V inv
λ⃗

V
λ⃗
∼= H0(L

λ⃗
↠ F

λ⃗
) Bott–Borel–Weil Theorem, F

λ⃗
=

∏
i G/Pλi

∇KZ
V = d + u(V ) with u(V ) differential operator.

2: common domain

Mflat ∼= Mparabolic

Mparabolic ⊇ U ⊆ F
λ⃗
//G open+dense

L|U ∼= (L
λ⃗
//G)|U

H0(Lℓ) ∼= H0(L
λ⃗
ℓ//G) ⊆ H0(Lℓ|U) preserved by ∇H and ∇KZ

ℓ-independence =⇒ eliminate higher orders =⇒ ∇H −∇KZ scalar
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