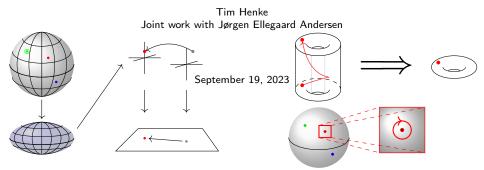


Dynamic CS/WZNW duality: the missing case

The equivalence of the Hitchin and Knizhnik-Zamolodchikov connections



Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Table of contents			

Quantum Chern-Simons Theory

- Recap
- Reduction to the boundary
- Quantisation
- Hitchin connection

The Tsuchiya–Ueno–Yamada or Wess–Zumino–Novikov Witten model

- Recap
- Conformal blocks
- Knizhnik–Zamolodchikov connection

S/WZNW correspondence

Main Theorem

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Chern–Simons ⁻	Theory: Recap		

Chern-Simons Theory: Recap

Setting

3-dimensional gauge theory on M_3 G compact, simply connected gauge group (e.g. SU(N)) $\mathfrak{g} = Lie(G)$ and $[\xi_a, \xi_b] = f_{ba}^c \xi_c$

Field content

Fields: connections $A \in \Omega^1(M_3; \mathfrak{g}) + A_0$ $A = \xi_a A^a_\mu \, dx^\mu$ Lie algebra-valued 1-form

Chern-Simons Theory: Recap

Setting

3-dimensional gauge theory on M_3 G compact, simply connected gauge group (e.g. SU(N)) $\mathfrak{g} = Lie(G)$ and $[\xi_a, \xi_b] = f_{ba}^c \xi_c$

Field content

Fields: connections $A \in \Omega^1(M_3; \mathfrak{g}) + A_0$ $A = \xi_a A^a_\mu \, dx^\mu$ Lie algebra-valued 1-form

Equations of motion

$$\begin{aligned} F_A &= \mathrm{d}_A A = \mathrm{d}A + [A \wedge A] = 0\\ F^a_{\mu\nu} &= \partial_{[\mu}A^a_{\nu]} + f^a_{bc}A^b_{[\mu}A^c_{\nu]} = 0. \end{aligned}$$

Chern-Simons Theory: Recap

Setting

3-dimensional gauge theory on M_3 G compact, simply connected gauge group (e.g. SU(N)) $\mathfrak{g} = Lie(G)$ and $[\xi_a, \xi_b] = f_{ba}^c \xi_c$

Field content

Fields: connections $A \in \Omega^1(M_3; \mathfrak{g}) + A_0$ $A = \xi_a A^a_\mu \, dx^\mu$ Lie algebra-valued 1-form

Equations of motion

$$\begin{split} F_A &= \mathrm{d}_A A = \mathrm{d}A + [A \wedge A] = 0\\ F^a_{\mu\nu} &= \partial_{[\mu}A^a_{\nu]} + f^a_{bc}A^b_{[\mu}A^c_{\nu]} = 0. \end{split}$$

Gauge transformations $\mathcal{G} := \{g : M_3 \to G \text{ smooth}\}$ $g \cdot A := \operatorname{Ad}_g A + g^{-1} dg$ $g \cdot A_{\mu} := gA_{\mu}g^{-1} + g^{-1}\partial_{\mu}g$

CS = TUY

Chern-Simons Theory: Recap

Setting

3-dimensional gauge theory on M_3 G compact, simply connected gauge group (e.g. SU(N)) $\mathfrak{g} = Lie(G)$ and $[\xi_a, \xi_b] = f_{ba}^c \xi_c$

Field content

Fields: connections $A \in \Omega^1(M_3; \mathfrak{g}) + A_0$ $A = \xi_a A^a_\mu \, dx^\mu$ Lie algebra-valued 1-form

Equations of motion

$$\begin{split} F_A &= \mathrm{d}_A A = \mathrm{d}A + [A \wedge A] = 0\\ F^a_{\mu\nu} &= \partial_{[\mu}A^a_{\nu]} + f^a_{bc}A^b_{[\mu}A^c_{\nu]} = 0. \end{split}$$

Gauge transformations

$$\mathcal{G} \mathrel{\mathop:}= \{g: M_3 \to G \text{ smooth}\}$$

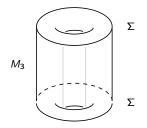
$$g \cdot A := \operatorname{Ad}_{g} A + g^{-1} \operatorname{d} g$$
$$g \cdot A_{\mu} := g A_{\mu} g^{-1} + g^{-1} \partial_{\mu} g$$

Classical solutions

Moduli space of flat connections

Setting

3-dim. gauge theory on $M_3 = \Sigma_2 \times [0, 1]$ G compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$

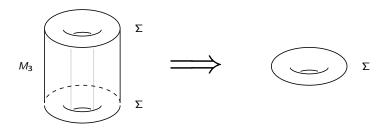


Setting

3-dim. gauge theory on $M_3 = \Sigma_2 \times [0, 1]$ G compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$

Reduction

2-dim. gauge theory on Σ_2 closed surface Moduli space $\mathcal{M}(\Sigma)$ of flat connections on Σ



Setting

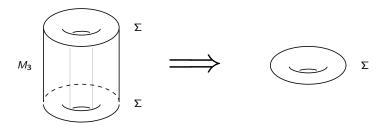
3-dim. gauge theory on $M_3 = \Sigma_2 \times [0, 1]$ G compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$

Reduction

2-dim. gauge theory on Σ_2 closed surface Moduli space $\mathcal{M}(\Sigma)$ of flat connections on Σ

Quantisation

Geometric quantisation



Setting

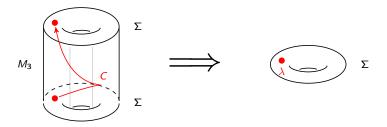
3-dim. gauge theory on $M_3 = \Sigma_2 \times [0, 1]$ G compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$

Reduction

2-dim. gauge theory on Σ_2 closed surface Moduli space $\mathcal{M}(\Sigma)$ of flat connections on Σ

Quantisation

Geometric quantisation Wilson operator $W^{\lambda}(C) := \operatorname{Tr}_{\lambda} \left[\int_{C} A \right]$ charge $\lambda_{i} \in \mathfrak{g}$ at p_{i}



Setting

3-dim. gauge theory on $M_3 = \Sigma_2 \times [0, 1]$ G compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$

Quantisation

Geometric quantisation Wilson operator $W^{\lambda}(C) := \operatorname{Tr}_{\lambda} \left[\int_{C} A \right]$ charge $\lambda_{i} \in \mathfrak{g}$ at p_{i}

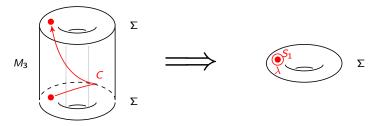
Reduction

2-dim. gauge theory on Σ_2 closed surface Moduli space $\mathcal{M}(\Sigma)$ of flat connections on Σ

Moduli space

 $\mathcal{M}(\Sigma, \vec{p}, \vec{\lambda}) \text{ of flat connections on}$ $\Sigma^{\circ} := \Sigma \setminus \{p_1, \dots, p_n\}$ $\int_{\mathcal{S}_i} A \sim \exp(2\pi i \lambda_i / k)$

 \cong Moduli space of $\vec{\lambda}$ -parabolic *G*-bundles



Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Cherns-Simons	TOFT: Quantisation		

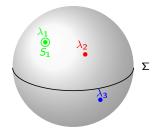
hern-Simons	

TUY/WZNW Model

CS = TUY

Main Theorem

Cherns-Simons TQFT: Quantisation

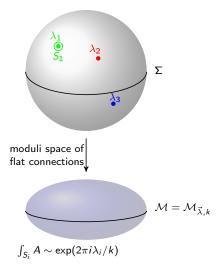


hern-Simons

TUY/WZNW Model

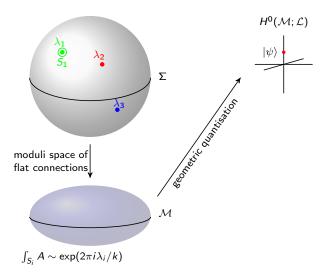
CS = TUY

Main Theo<u>rem</u>

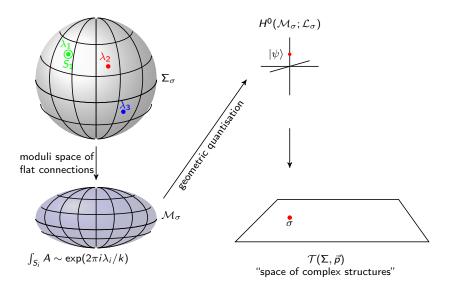


	Simons	

CS = TUY

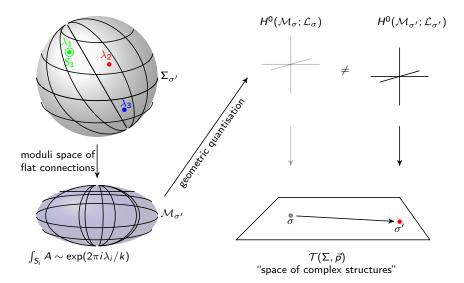


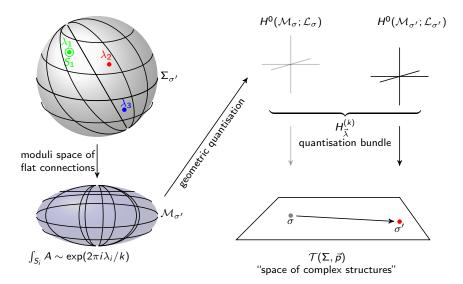
hern–Si	

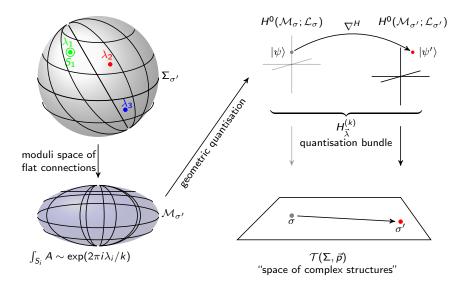


hern-Simons	

CS = TUY







Hitchin connection [Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle $H_{\vec{\lambda}}^{(k)} \twoheadrightarrow \mathcal{T}(\Sigma, \vec{p})$ space of complex structures ∇^{H} projectively flat

Hitchin connection [Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle $H_{\vec{\lambda}}^{(k)} \twoheadrightarrow \mathcal{T}(\Sigma, \vec{p})$ space of complex structures ∇^{H} projectively flat

Differential operator

 $\nabla_V^H = \mathscr{L}_V + u(V)$ with u(V) 2nd-order differential operator [Andersen, 2012] ∇_V^H preserves holomorphic \subset smooth sections

Hitchin connection [Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle
$$H_{\vec{\lambda}}^{(k)} \twoheadrightarrow \mathcal{T}(\Sigma, \vec{p})$$

space of complex structures ∇^{H} projectively flat

Differential operator

 $\nabla^H_V = \mathscr{L}_V + u(V) \text{ with } u(V) \text{ 2nd-order} \\ \text{differential operator [Andersen, 2012] } \nabla^H_V \\ \text{preserves holomorphic } \subset \text{smooth sections} \\ \end{cases}$

Topological obstruction

 $\begin{aligned} \nabla^{H} \text{ exists if:} \\ H^{1}(M) &= 0 \\ c_{1}(\mathcal{M}) &= n[\frac{\omega}{2\pi}]: \text{ rare!} \end{aligned}$

Hitchin connection [Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle $H_{\vec{\lambda}}^{(k)} \twoheadrightarrow \mathcal{T}(\Sigma, \vec{p})$ space of complex structures ∇^{H} projectively flat

Differential operator

 $\nabla_V^H = \mathscr{L}_V + u(V)$ with u(V) 2nd-order differential operator [Andersen, 2012] ∇_V^H preserves holomorphic \subset smooth sections

Topological obstruction

 $abla^{H}$ exists if: $H^{1}(M) = 0$ $c_{1}(\mathcal{M}) = n[\frac{\omega}{2\pi}]$: rare!

Solution

Metaplectic correction xists if $c_1(\mathcal{M})$ even and $H^{0,1}(\mathcal{M}) = 0$

Hitchin connection [Axelrod et al., 1991, Hitchin, 1990]

Quantisation bundle
$$H_{\vec{\lambda}}^{(k)} \twoheadrightarrow \mathcal{T}(\Sigma, \vec{p})$$

space of complex structures
 ∇^{H} projectively flat

Differential operator

 $\nabla^H_V = \mathscr{L}_V + u(V)$ with u(V) 2nd-order differential operator [Andersen, 2012] ∇^H_V preserves holomorphic \subset smooth sections

Topological obstruction

 $abla^{H}$ exists if: $H^{1}(M) = 0$ $c_{1}(\mathcal{M}) = n[\frac{\omega}{2\pi}]$: rare!

Solution

Metaplectic correction Exists if $c_1(\mathcal{M})$ even and $H^{0,1}(\mathcal{M}) = 0$

Lemma (Andersen and H., to appear)

The metaplectic-corrected Hitchin connection exists on $H_{\vec{\lambda}}^{(k)}$ for regular weights $\vec{\lambda}$.

Lemma (Andersen and H., to appear)

For every tuple $\vec{\lambda}$ the sum $\vec{\lambda} + \vec{\rho}$ is regular and the inclusion $H_{\vec{\lambda}}^{(k)} \subseteq {}^{\delta}H_{\vec{\lambda}+\vec{\rho}}^{(k+h^{\vee})}$ is preserved by the metaplectic-corrected Hitchin connection.

TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

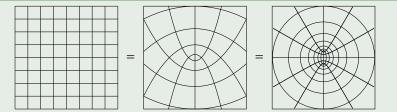
TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

Conformal field theory

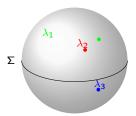


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

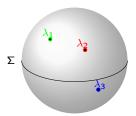


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

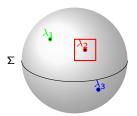


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

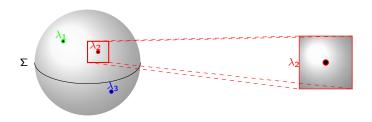


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

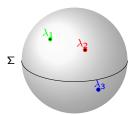


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

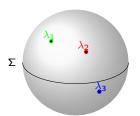


TUY/WZNW CFT

2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]



Verma module $\mathscr{H}_k(\lambda) =$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.

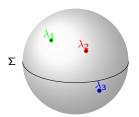
"primary field insertions" $\Phi^{\lambda_i}(p_i)$

TUY/WZNW CFT

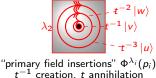
2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]



Verma module $\mathscr{H}_k(\lambda) = V_\lambda[t^{-1}]$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.



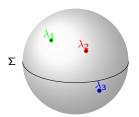
 t^{-1} creation, t annihilation $\mathfrak{g} \subset V_{\lambda}$ irr. rep. highest weight λ

TUY/WZNW CFT

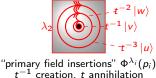
2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]



Verma module $\mathscr{H}_k(\lambda) = V_\lambda[t^{-1}]$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.



 t^{-1} creation, t annihilation $\mathfrak{g} \subset V_{\lambda}$ irr. rep. highest weight λ

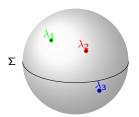
The Tsuchiya-Ueno-Yamada/Wess-Zumino-Novikov-Witten model

TUY/WZNW CFT

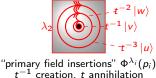
2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]



Verma module $\mathscr{H}_k(\lambda) = V_\lambda[t^{-1}]$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.



 t^{-1} creation, t annihilation $\mathfrak{g} \subset V_{\lambda}$ irr. rep. highest weight λ

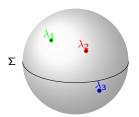
The Tsuchiya-Ueno-Yamada/Wess-Zumino-Novikov-Witten model

TUY/WZNW CFT

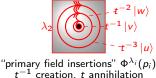
2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]



Verma module $\mathscr{H}_k(\lambda) = V_\lambda[t^{-1}]$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.



 t^{-1} creation, t annihilation $\mathfrak{g} \subset V_{\lambda}$ irr. rep. highest weight λ

The Tsuchiya-Ueno-Yamada/Wess-Zumino-Novikov-Witten model

TUY/WZNW CFT

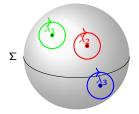
2-dimensional gauge theory on Σ_2 *G* compact, connected, simply connected gauge group, $\mathfrak{g} = \text{Lie}(G)$ Conformal field theory

Citations

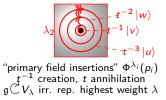
[Wess and Zumino, 1974, Tsuchiya et al., 1989, Ueno, 2008, Kawamoto et al., 1988, Andersen and Ueno, 2007b]

Conformal blocks (conformal covacua)

 $\mathcal{V}_{\vec{\lambda},k} := \left[\bigotimes_{i=1}^{n} \mathscr{H}_{k}(\lambda_{i})\right]_{\mathfrak{g}[\Sigma^{\circ}]} \text{ where } \mathfrak{g}[\Sigma^{\circ}] = \{\Sigma^{\circ} \to \mathfrak{g} \text{ algebraic}\}^{\overset{\circ}{\leftarrow}} \mathscr{H}_{k}(\lambda) \text{ via Laurent exp.}$



Verma module $\mathscr{H}_k(\lambda) = V_\lambda[t^{-1}]$ irr. rep. $\widehat{\mathfrak{g}} := \mathfrak{g}((t)) \oplus \mathbb{C}c$, highest weight λ , central charge k.



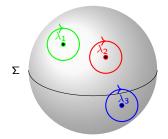
	Simons

WZNW CFT: Sheaf of Conformal Blocks

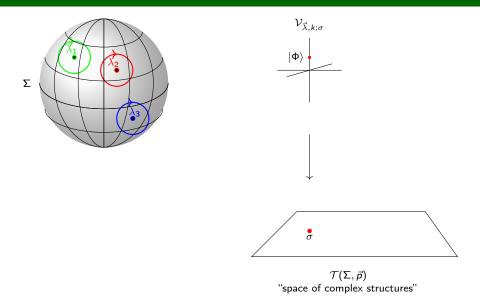


	Simons

WZNW CFT: Sheaf of Conformal Blocks

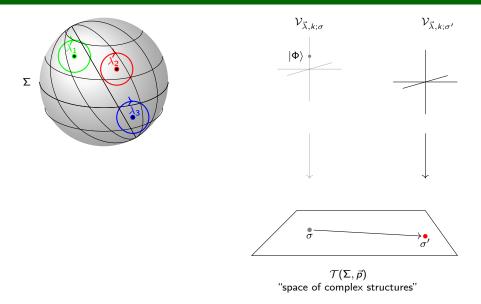


WZNW CFT: Sheaf of Conformal Blocks



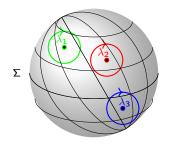
hern−	Simons

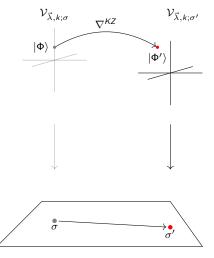
WZNW CFT: Sheaf of Conformal Blocks



	Simons

WZNW CFT: Sheaf of Conformal Blocks





 $\mathcal{T}(\Sigma,\vec{p})$ ''space of complex structures''

	Simons

TUY/WZNW Model

CS = TUY

Main Theorem

TUY CFT: Knizhnik-Zamolodchikov Connection

	hern-Simons
<u> </u>	nern—simons

TUY CFT: Knizhnik–Zamolodchikov Connection

Knizhnik-Zamolodchikov equations [Knizhnik and Zamolodchikov, 1984]

Ward Identities
$$\implies \left((k+h^{\vee}) \frac{\partial}{\partial z_i} + \sum_{i \neq j} \sum_a \frac{\xi_i^a \otimes \xi_j^a}{z_i - z_j} \right) \langle \Phi(v_1, z_1) \cdots \Phi(v_N, z_N) \rangle = 0$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main T
TUY CFT: Kni	zhnik–Zamolodchikov Co	nnection	

Knizhnik-Zamolodchikov equations [Knizhnik and Zamolodchikov, 1984]

Гheorem

Ward Identities
$$\implies \left((k+h^{\vee}) \frac{\partial}{\partial z_i} + \sum_{i \neq j} \sum_{a} \frac{\xi_i^a \otimes \xi_j^a}{z_i - z_j} \right) \langle \Phi(v_1, z_1) \cdots \Phi(v_N, z_N) \rangle = 0$$

Knizhnik-Zamolodchikov connection

$$\nabla^{\mathsf{KZ}} := \mathrm{d} + \frac{1}{2(k+h^{\vee})} \sum_{i \neq j} \frac{\xi^a_i \otimes \xi^a_j}{z_i - z_j} (\mathrm{d} z_i - \mathrm{d} z_j)$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theo
TUY CFT: Kr	nizhnik–Zamolodchikov Con	nection	

orem

Knizhnik-Zamolodchikov equations [Knizhnik and Zamolodchikov, 1984]

Ward Identities
$$\implies \left((k+h^{\vee}) \frac{\partial}{\partial z_i} + \sum_{i \neq j} \sum_{a} \frac{\xi_i^a \otimes \xi_j^a}{z_i - z_j} \right) \langle \Phi(v_1, z_1) \cdots \Phi(v_N, z_N) \rangle = 0$$

Knizhnik-Zamolodchikov connection

$$\nabla^{\mathsf{KZ}} := \mathrm{d} + \frac{1}{2(k+h^{\vee})} \sum_{i \neq j} \frac{\xi_i^a \otimes \xi_j^a}{z_i - z_j} (\mathrm{d} z_i - \mathrm{d} z_j)$$

Higher genus: Knizhnik–Zamolodchikov–Bernard equations/Tsuchiya–Ueno–Yamada connection [Bernard, 1988, Tsuchiya et al., 1989]

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem

Data

 $p_1, \ldots, p_n \in \Sigma$ smooth surface, $\Sigma^{\circ} := \Sigma \setminus \{p_1, \ldots, p_n\}$ $G(= \operatorname{SU}(N))$ semi-simple, connected, simply connected Lie group, $\mathfrak{g} = \operatorname{Lie}(G)(=\mathfrak{su}(N))$ $\lambda_1, \ldots, \lambda_n \in \mathfrak{g}^*$ representations: integral, dominant weights/charges k > 0 integer: level/quantisation parameter

	CS	WZNW
Physics	Quantised classical gauge theory	Conformal gauge theory
<i>p</i> i	Punctures	Poles
Fields	Flat $\mathfrak{g} ext{-connections on }\Sigma^\circ$	$\mathfrak{g} ext{-modes on }\Sigma^\circ$
Charges	Holonomy $p_i \sim \lambda_i^ee / k$	Highest weight λ_i , central charge k
Dependence	Complex structure	Conformal structure
Connection	Hitchin connection	KZ connection

Theorem (Uniformisation Theorem [Witten, 1989, Laszlo and Sorger, 1997])

 $\mathcal{H}^{(k)}_{\vec{\lambda}} \cong \mathcal{V}_{\vec{\lambda},k}$ as vector bundles over $\mathcal{T}(\Sigma, \vec{p})$.

Main Theorem

Theorem (Uniformisation Theorem)

 $\begin{aligned} & \mathcal{H}_{\vec{\lambda}}^{(k)} \cong \mathcal{V}_{\vec{\lambda},k} \text{ as vector bundles over} \\ & \mathcal{T}(\boldsymbol{\Sigma},\vec{p}). \end{aligned}$

Previous work

[Laszlo, 1998], [Andersen et al., 2017], [Biswas et al., 2021b, Biswas et al., 2021a], [Daskalopoulos and Wentworth, 2011]

Theorem (Andersen and H., to appear)

Let $p_1, \ldots, p_n \in \Sigma = \mathbb{CP}^1$ be a smooth pointed surface and let k > 0, $n \ge 3$, and $N \ge 2$ be integers. Let $G = \mathrm{SU}(N)$ and $\vec{\lambda} = (\lambda_1, \ldots, \lambda_n)$ be integral, dominant weights for G. If $n + N \ge 7$, then the uniformisation isomorphism

$$H^{(k)}_{\vec{\lambda}}(\Sigma, \vec{p}) \cong \mathcal{V}_{\vec{\lambda},k}(\Sigma, \vec{p})$$

of vector bundles over Teichmüller space $\mathcal{T}(\Sigma)$ is projectively flat with respect to the Hitchin connection ∇^H and the Knizhnik–Zamolodchikov connection ∇^{KZ} .

Application: Topological Quantum Field Theory

To do:

Construct full gauge-theoretic WRT TQFT from this via [Andersen and Petersen, 2016].

Application: Topological Quantum Field Theory

	ict full gauge-theoretic V TQFT from this via ersen and Petersen, 201			Ç	
	Gauge theory	Confor	mal field theory	Brai	d algebra
Physics	Chern–Simons QFT [Witten, 1989]		ZNW CFT tten, 1989]		lgebraic en, 1989]
Maths	?	TUY TQFT [Andersen and Ueno, 2007b]		[Reshe	nsor categories etikhin and ev, 1991]

Theorem ([Andersen and Ueno, 2007a, Andersen and Ueno, 2012, Andersen and Ueno, 2015])

The Tsuchiya-Ueno-Yamada TQFT constructed in [Andersen and Ueno, 2007b] is isomorphic to the Witten-Reshetikhin-Turaev TQFT.

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

Tim Henke	Joint work with Jørgen Ellegaard Andersen
Dynamic CS	/WZNW duality: the missing case

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\mathcal{V}_{ec{\lambda},k}\subseteq V^{\mathsf{inv}}_{ec{\lambda}}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\text{inv}} \\ V_{\vec{\lambda}} \cong H^0(L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}}) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda_i} \end{array}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((\boldsymbol{L}_{\vec{\lambda}} \twoheadrightarrow \boldsymbol{F}_{\vec{\lambda}})/\!\!/ \mathcal{G}) \text{ Bott-Borel-Weil Theorem, } \boldsymbol{F}_{\vec{\lambda}} = \prod_i \mathcal{G}/P_{\lambda_i} \end{array}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik–Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}}) /\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\text{inv}} \\ V_{\vec{\lambda}}^{\text{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}}) /\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{kZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\mathcal{M}_{\mathsf{flat}}\cong \mathcal{M}_{\mathsf{parabolic}}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\begin{split} \mathcal{M}_{\mathsf{flat}} &\cong \mathcal{M}_{\mathsf{parabolic}} \\ \mathcal{M}_{\mathsf{parabolic}} \supseteq U \subseteq \mathsf{F}_{\vec{\lambda}} /\!\!/ \mathsf{G} \text{ open+dense} \end{split}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\begin{split} \mathcal{M}_{\mathsf{flat}} &\cong \mathcal{M}_{\mathsf{parabolic}} \\ \mathcal{M}_{\mathsf{parabolic}} \supseteq U \subseteq F_{\vec{\lambda}} /\!\!/ \mathcal{G} \text{ open+dense} \\ \mathcal{L}|_U &\cong (L_{\vec{\lambda}} /\!\!/ \mathcal{G})|_U \end{split}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^{\mathsf{0}}((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_{i} G/P_{\lambda} \\ \nabla_{V}^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\begin{split} \mathcal{M}_{\mathsf{flat}} &\cong \mathcal{M}_{\mathsf{parabolic}} \\ \mathcal{M}_{\mathsf{parabolic}} \supseteq U \subseteq F_{\vec{\lambda}} /\!\!/ \mathcal{G} \text{ open+dense} \\ \mathcal{L}|_U &\cong (L_{\vec{\lambda}} /\!\!/ \mathcal{G})|_U \\ \mathcal{H}^0(\mathcal{L}_{-}) &\cong \mathcal{H}^0(L_{\vec{\lambda}_{-}} /\!\!/ \mathcal{G}) \subseteq \mathcal{H}^0(\mathcal{L}^{\ell}|_U) \text{ preserved by } \nabla^H \text{ and } \nabla^{KZ} \end{split}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\begin{split} \mathcal{M}_{\mathsf{flat}} &\cong \mathcal{M}_{\mathsf{parabolic}} \\ \mathcal{M}_{\mathsf{parabolic}} \supseteq U \subseteq F_{\vec{\lambda}} /\!\!/ \mathcal{G} \text{ open+dense} \\ \mathcal{L}|_U &\cong (L_{\vec{\lambda}} /\!\!/ \mathcal{G})|_U \\ H^0(\mathcal{L}^\ell) &\cong H^0(L_{\vec{\lambda}}^{\ell} /\!\!/ \mathcal{G}) \subseteq H^0(\mathcal{L}^\ell|_U) \text{ preserved by } \nabla^H \text{ and } \nabla^{\mathsf{KZ}} \end{split}$$

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
Proof idea			

1: geometrise Knizhnik-Zamolodchikov connection

$$\begin{array}{l} \mathcal{V}_{\vec{\lambda},k} \subseteq V_{\vec{\lambda}}^{\mathsf{inv}} \\ V_{\vec{\lambda}}^{\mathsf{inv}} \cong H^0((L_{\vec{\lambda}} \twoheadrightarrow F_{\vec{\lambda}})/\!\!/ G) \text{ Bott-Borel-Weil Theorem, } F_{\vec{\lambda}} = \prod_i G/P_{\lambda_i} \\ \nabla_V^{KZ} = \mathrm{d} + u(V) \text{ with } u(V) \text{ differential operator.} \end{array}$$

2: common domain

$$\begin{split} \mathcal{M}_{\mathsf{flat}} &\cong \mathcal{M}_{\mathsf{parabolic}} \\ \mathcal{M}_{\mathsf{parabolic}} \supseteq U \subseteq F_{\vec{\lambda}} /\!\!/ \mathcal{G} \text{ open+dense} \\ \mathcal{L}|_U &\cong (L_{\vec{\lambda}} /\!\!/ \mathcal{G})|_U \\ H^0(\mathcal{L}^\ell) &\cong H^0(L_{\vec{\lambda}}^{-\ell} /\!\!/ \mathcal{G}) \subseteq H^0(\mathcal{L}^\ell|_U) \text{ preserved by } \nabla^H \text{ and } \nabla^{KZ} \\ \ell\text{-independence} &\Longrightarrow \text{ eliminate higher orders } \Longrightarrow \nabla^H - \nabla^{KZ} \text{ scalar} \end{split}$$

References I

Andersen, J. E. (2012).

Hitchin's connection, Toeplitz operators, and symmetry invariant deformation quantization.

Quantum topology, 3(3):293-325.

Andersen, J. E., Himpel, B., Jørgensen, S. F., Martens, J., and McLellan, B. (2017). The Witten–Reshetikhin–Turaev invariant for links in finite order mapping tori I. *Advances in Mathematics*, 304:131–178.

Andersen, J. E. and Petersen, W. (2016). Construction of modular functors from modular tensor categories. *arXiv preprint arXiv:1602.04907*.

Andersen, J. E. and Ueno, K. (2007a). Abelian conformal field theory and determinant bundles. International Journal of Mathematics, 18(08):919–993.

Andersen, J. E. and Ueno, K. (2007b). Geometric construction of modular functors from conformal field theory. *Journal of Knot theory and its Ramifications*, 16(02):127–202.

References II


```
Andersen, J. E. and Ueno, K. (2012).
Modular functors are determined by their genus zero data.
Quantum Topology, 3(3):255–291.
```



```
Andersen, J. E. and Ueno, K. (2015).
Construction of the witten–reshetikhin–turaev tqft from conformal field theory.
Inventiones mathematicae, 201(2):519–559.
```


Axelrod, S., Della Pietra, S., and Witten, E. (1991). Geometric quantization of chern simons gauge theory. *representations*, 34:39.


```
Bernard, D. (1988).
```

On the wess-zumino-witten models on the torus. *Nuclear Physics B*, 303(1):77–93.

```
Biswas, I., Mukhopadhyay, S., and Wentworth, R. (2021a).
Geometrization of the tuy/wzw/kz connection.
arXiv preprint arXiv:2110.00430.
```

```
Biswas, I., Mukhopadhyay, S., and Wentworth, R. (2021b).
Ginzburg algebras and the hitchin connection for parabolic g-bundles.
arXiv preprint arXiv:2103.03792.
```

C	hern–	Simons

TUY/WZNW Model

CS = TUY

References III

Daskalopoulos, G. D. and Wentworth, R. A. (2011). Geometric quantization for the moduli space of vector bundles with parabolic structure. In <i>Geometry, topology and physics,</i> pages 119–156. De Gruyter.
Hitchin, N. J. (1990). Flat connections and geometric quantization. Communications in mathematical physics, 131:347–380.
Kawamoto, N., Namikawa, Y., Tsuchiya, A., and Yamada, Y. (1988). Geometric realization of conformal field theory on riemann surfaces. <i>Communications in mathematical physics</i> , 116(2):247–308.
Knizhnik, V. and Zamolodchikov, A. (1984). Current algebra and wess-zumino model in two dimensions. <i>Nuclear Physics B</i> , 247(1):83–103.
Laszlo, Y. (1998). Hitchin's and wzw connections are the same. Journal of Differential Geometry, 49(3):547–576.
Laszlo, Y. and Sorger, C. (1997). The line bundles on the moduli of parabolic <i>g</i> -bundles over curves and their sections.

In Annales scientifiques de l'Ecole normale supérieure, volume 30, pages 499-525.

Chern–Simons	TUY/WZNW Model	CS = TUY	Main Theorem
References IV			

N

Tsuchiya, A., Ueno, K., and Yamada, Y. (1989). Conformal field theory on universal family of stable curves with gauge symmetries. In *Integrable Sys Quantum Field Theory*, pages 459–566. Elsevier.

Ueno, K. (2008).

Conformal field theory with gauge symmetry, volume 24. American Mathematical Soc.

Wess, J. and Zumino, B. (1974). Supergauge transformations in four dimensions. *Nuclear Physics B*, 70(1):39–50.

Witten, E. (1989).

Quantum field theory and the Jones polynomial. Communications in Mathematical Physics, 121(3):351–399.